Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 126(8): e2021JE006859, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845552

RESUMO

Measurements from the InSight lander radiometer acquired after landing are used to characterize the thermophysical properties of the Martian soil in Homestead hollow. This data set is unique as it stems from a high measurement cadence fixed platform studying a simple well-characterized surface, and it benefits from the environmental characterization provided by other instruments. We focus on observations acquired before the arrival of a regional dust storm (near Sol 50), on the furthest observed patch of soil (i.e., ∼3.5 m away from the edge of the lander deck) where temperatures are least impacted by the presence of the lander and where the soil has been least disrupted during landing. Diurnal temperature cycles are fit using a homogenous soil configuration with a thermal inertia of 183 ± 25 J m-2 K-1 s-1/2 and an albedo of 0.16, corresponding to very fine to fine sand with the vast majority of particles smaller than 140 µm. A pre-landing assessment leveraging orbital thermal infrared data is consistent with these results, but our analysis of the full diurnal temperature cycle acquired from the ground further indicates that near surface layers with different thermophysical properties must be thin (i.e., typically within the top few mm) and deep layering with different thermophysical properties must be at least below ∼4 cm. The low thermal inertia value indicates limited soil cementation within the upper one or two skin depths (i.e., ∼4-8 cm and more), with cement volumes <<1%, which is challenging to reconcile with visible images of overhangs in pits.

2.
Science ; 367(6475): 297-300, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31919130

RESUMO

The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...